Sovereign Default Risk, Monetary Policy and Global Financial Conditions

Leonardo Barreto

University of Minnesota

Minnesota-Wisconsin International-Macro Student Workshop September 2023

- Emerging economies are highly exposed to global financial conditions
 - U.S. interest rate can explain the large movements seen in their domestic rates and aggregate activity (Neumeyer and Perri (2005), Uribe and Yue (2006))

- Emerging economies are highly exposed to global financial conditions
 - U.S. interest rate can explain the large movements seen in their domestic rates and aggregate activity (Neumeyer and Perri (2005), Uribe and Yue (2006))
- Central banks respond to U.S. monetary tightenings, but how?
 - increasing policy rates: to control inflation and prevent capital outflows (Vicondoa (2019), Huertas (2022))
 - decreasing policy rates: to mitigate negative impact of tighter global financial conditions (De Leo, Gopinath and Kalemli-Ozkan, (2023))

- Emerging economies are highly exposed to global financial conditions
 - U.S. interest rate can explain the large movements seen in their domestic rates and aggregate activity (Neumeyer and Perri (2005), Uribe and Yue (2006))
- Central banks respond to U.S. monetary tightenings, but how?
 - increasing policy rates: to control inflation and prevent capital outflows (Vicondoa (2019), Huertas (2022))
 - decreasing policy rates: to mitigate negative impact of tighter global financial conditions (De Leo, Gopinath and Kalemli-Ozkan, (2023))
- Higher foreign interest rates increase default risk for these economies (Johri, Khan and Sosa-Padilla (2022), Almeida, Esquivel, Kehoe and Nicolini (2023))

- Emerging economies are highly exposed to global financial conditions
 - U.S. interest rate can explain the large movements seen in their domestic rates and aggregate activity (Neumeyer and Perri (2005), Uribe and Yue (2006))
- Central banks respond to U.S. monetary tightenings, but how?
 - increasing policy rates: to control inflation and prevent capital outflows (Vicondoa (2019), Huertas (2022))
 - decreasing policy rates: to mitigate negative impact of tighter global financial conditions (De Leo, Gopinath and Kalemli-Ozkan, (2023))
- Higher foreign interest rates increase default risk for these economies (Johri, Khan and Sosa-Padilla (2022), Almeida, Esquivel, Kehoe and Nicolini (2023))

This paper studies how movements in the world interest rate affect emerging economies in a model where default risk and monetary policy interact

- Embed a process for the world interest rate in Arellano, Bai and Mihalache (2023) New Keynesian-Default model
 - ▶ Gali and Monacelli (2005) model with long-term defaultable sovereign debt

- Embed a process for the world interest rate in Arellano, Bai and Mihalache (2023) New Keynesian-Default model
 - ▶ Gali and Monacelli (2005) model with long-term defaultable sovereign debt
- Calibrate the model to Mexico using data for the period 2001Q1-2019Q4

- Embed a process for the world interest rate in Arellano, Bai and Mihalache (2023) New Keynesian-Default model
 - ▶ Gali and Monacelli (2005) model with long-term defaultable sovereign debt
- Calibrate the model to Mexico using data for the period 2001Q1-2019Q4
- Revisit the effects of world interest rate hikes on domestic macroeconomic variables (inflation, int. rates, spreads, exchange rate, output)
 - Through which new channels are world interest rates transmitted?

- Embed a process for the world interest rate in Arellano, Bai and Mihalache (2023) New Keynesian-Default model
 - ▶ Gali and Monacelli (2005) model with long-term defaultable sovereign debt
- Calibrate the model to Mexico using data for the period 2001Q1-2019Q4
- Revisit the effects of world interest rate hikes on domestic macroeconomic variables (inflation, int. rates, spreads, exchange rate, output)
 - Through which new channels are world interest rates transmitted?
 - Do these new channels rationalize the mixed empirical evidence about EMEs monetary policy rates during U.S. tightening periods?

- Embed a process for the world interest rate in Arellano, Bai and Mihalache (2023) New Keynesian-Default model
 - ▶ Gali and Monacelli (2005) model with long-term defaultable sovereign debt
- Calibrate the model to Mexico using data for the period 2001Q1-2019Q4
- Revisit the effects of world interest rate hikes on domestic macroeconomic variables (inflation, int. rates, spreads, exchange rate, output)
 - Through which new channels are world interest rates transmitted?
 - Do these new channels rationalize the mixed empirical evidence about EMEs monetary policy rates during U.S. tightening periods?
 - Can a depreciation (appreciation) be contractionary (expansionary) for output? Auclert, Ronglie, Souchier, Straub (2021), Bianchi and Coulibaly (2023)

What I find

- ▶ The model is able to account for salient features of business cycles in Mexico
- The response of macro variables to an increase in the world interest rate is highly state-contingent
 - With low or very high debt, no effect on probability of default. Standard mechanism of the NK model
 - With intermediate debt levels, probability of default increases sharply Default risk shapes the response.
- ▶ Default risk is able to break monetary policy comovement between U.S. and EMEs
- ▶ The model can generate a negative comovement between exchange rate and output

— Median EME interest rate – – U.S. interest rate

- Correlation between U.S. and EME interest rates is 0.76
- Mixed evidence during U.S. monetary tightenings
- Positive correlation between countries in default and U.S. interest rate

Model

Environment

- Small open economy populated by households, firms, a central bank, and a government
- ▶ Three types of goods: domestic final, domestic intermediates, and foreign imported
- Government borrows from abroad using long-term bonds and can default on its debt
- Default leads to:
 - Temporary exclusion from financial markets
 - Productivity loss
 - Utility cost for the government
- Central bank conducts monetary policy following a Taylor rule

Households

▶ Representative consumer with preferences:

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - v(n_t) \right] \quad \text{where} \quad c_t = \left[\theta \left(c_t^D \right)^{\frac{\rho-1}{\rho}} + (1-\theta) \left(c_t^F \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\nu}{\rho-1}}$$

Budget constraint (in nominal terms):

$$P_{t}^{D}c_{t}^{D} + (1 + \tau_{F})P_{t}^{F}c_{t}^{F} + q_{t}^{D}B_{t+1}^{D} \leq W_{t}n_{t} + B_{t}^{D} + \Psi_{t} + T_{t}$$

Households

▶ Representative consumer with preferences:

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - v(n_t) \right] \quad \text{where} \quad c_t = \left[\theta \left(c_t^D \right)^{\frac{\rho-1}{\rho}} + (1-\theta) \left(c_t^F \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

Budget constraint (in nominal terms):

$$P_t^D c_t^D + (1 + \tau_F) P_t^F c_t^F + q_t^D B_{t+1}^D \leq W_t n_t + B_t^D + \Psi_t + T_t$$

. . .

Optimality conditions

Labor supply:
$$w_t = -\frac{v_{n_t}}{u_{c_t^D}}$$
where $w_t := \frac{W_t}{P_t^D}$ Relative demand: $\frac{u_{c_t^F}}{u_{c_t^D}} = (1 + \tau_F)e_t$ where $e_t := \frac{P_t^f}{P_t^d}$ Euler equation: $u_{c_t^D} = \beta i_t \mathbb{E}_t \left[\frac{u_{c_{t+1}}}{\pi_{t+1}} \right]$ where $i_t := \frac{1}{q_t^D}$

Firms

Domestic final goods:

- Produced by competitive firms using intermediate goods: $Y_t = \left[\int_0^1 (y_{jt})^{\frac{e-1}{e}} dj\right]^{\frac{e}{e-1}}$
- ► Standard demand functions and price index: $y_{jt} = \left(\frac{p_{jt}}{P_t^D}\right)^{-\epsilon} Y_t$ and $P_t^D = \left[\int_0^1 p_{jt}^{1-\epsilon} dj\right]^{\frac{1}{1-\epsilon}}$

Firms

Domestic final goods:

- Produced by competitive firms using intermediate goods: $Y_t = \left[\int_0^1 (y_{jt})^{\frac{\epsilon-1}{\epsilon}} dj\right]^{\frac{\epsilon}{\epsilon-1}}$
- ► Standard demand functions and price index: $y_{jt} = \left(\frac{p_{jt}}{P_t^D}\right)^{-\epsilon} Y_t$ and $P_t^D = \left[\int_0^1 p_{jt}^{1-\epsilon} dj\right]^{\frac{1}{1-\epsilon}}$

Domestic intermediate goods:

▶ Produced by monopolistic firms using labor: $y_{jt} = z_t N_{jt}$

$$\blacktriangleright \text{ Maximize } \mathbb{E}_0 \sum_{t=0}^{\infty} Q_{t,0} \left\{ p_{jt} y_{jt} - (1-\tau) W_t N_{jt} - \frac{\varphi}{2} \left(\frac{p_{jt}}{p_{jt-1}} - \bar{\pi} \right)^2 P_t^D Y_t \right\} \text{ s.t. demand}$$

Phillips curve:

$$\varphi(\pi_t - \bar{\pi})\pi_t = (\epsilon - 1)\left(\frac{w_t}{z_t} - 1\right) + \beta \varphi \mathbb{E}_t \left[\frac{u_{c_{t+1}^D} Y_{t+1}}{u_{c_t^D} Y_t}(\pi_{t+1} - \bar{\pi})\pi_{t+1}\right]$$

Central Bank and Foreign Sector

Central bank

• Conducts monetary policy following a Taylor rule: $i_t = \overline{i} \left(\frac{\pi_t}{\overline{\pi}}\right)^{\psi}$

Central Bank and Foreign Sector

Central bank

• Conducts monetary policy following a Taylor rule: $i_t = \overline{i} \left(\frac{\pi_t}{\overline{\pi}}\right)^{\psi}$

Foreign households

• Domestic final goods' foreign demand: $X_t = e_t^{\gamma}$

Central Bank and Foreign Sector

Central bank

• Conducts monetary policy following a Taylor rule: $i_t = \overline{i} \left(\frac{\pi_t}{\overline{\pi}}\right)^{\psi}$

Foreign households

• Domestic final goods' foreign demand: $X_t = e_t^{\gamma}$

Foreign lenders

- Long-term bonds denominated in foreign currency:
 - ▶ Bond pays $(r_t^{\star} + \delta) \left[1, (1 \delta), (1 \delta)^2, (1 \delta)^3...\right]$
 - Law of motion for bonds: $B_{t+1} = (1 \delta)B_t + I_t$
- Competitive, deep-pocketed, and risk-neutral:

Bond price:
$$q_t = \frac{1}{1 + r_t^*} \mathbb{E}_t \left[(1 - D_{t+1}) ((r_t^* + \delta) + (1 - \delta)q_{t+1}) \right]$$

World interest rate follows an AR(1) process:

$$r_t^{\star} = \rho_r r_{t-1}^{\star} + (1 - \rho_r) \bar{r^{\star}} + \epsilon_{rt}$$
9/23

Government and Balance of Payments

- ▶ Maximizes household's utility, and discounts future with $\beta_g < \beta$
- ▶ Borrows from foreign lenders and can default on its debt: $D_t \in \{0, 1\}$
- Government budget constraint:

$$t_t + \tau w_t N_t = \begin{cases} \tau_f e_t c_t^F + e_t \left[q_t (B_{t+1} - (1-\delta)B_t) - (r_t^* + \delta)B_t \right] & \text{if } D_t = 0\\ \tau_F e_t c_t^F & \text{if } D_t = 1 \end{cases}$$

Government and Balance of Payments

- ▶ Maximizes household's utility, and discounts future with $\beta_g < \beta$
- ▶ Borrows from foreign lenders and can default on its debt: $D_t \in \{0, 1\}$
- Government budget constraint:

$$t_t + \tau w_t N_t = \begin{cases} \tau_f e_t c_t^F + e_t \left[q_t (B_{t+1} - (1-\delta)B_t) - (r_t^* + \delta)B_t \right] & \text{if } D_t = 0\\ \tau_F e_t c_t^F & \text{if } D_t = 1 \end{cases}$$

Balance of payments:

$$e_t^{\gamma} - e_t c_t^{\mathsf{F}} = (1 - D_t) e_t \left((r_t^{\star} + \delta) B_t - q_t \left(B_{t+1} - (1 - \delta) B_t \right) \right)$$

Private and Monetary Equilibrium

Definition 1

Let $s := \{z, r^*\}$ be the exogenous state. Given $S = \{s, B, D, B'\}$, the government policy function for future default $\mathcal{D}'(s', \nu', B')$, future borrowing $\mathcal{B}'(s', B')$, and the transfer function t(S), a *private* and monetary equilibrium consists of households' policies $\{c(S), c^F(S), n(S), B^D(S)\}$, firms' policies $\{N(S), \pi(S)\}$ and prices $\{w(S), i(S), e(S)\}$ such that:

- 1. Households optimize
- 2. Firms optimize
- 3. Export demand is satisfied
- 4. Central Bank's interest rate rule is satisfied
- 5. Labor, domestic goods, and domestic bond markets clear
- 6. The balance of payments condition is satisfied.

Recursive Problem

• Let $s = \{z, r^*\}$. The value with the option to default is:

$$V(s, v, B) = \max_{D \in \{0,1\}} \left\{ (1-D)W(s, B) + D\left[W^d(s) - v\right] \right\}$$

where v is an *iid* utility shock.

Recursive Problem

• Let $s = \{z, r^*\}$. The value with the option to default is:

$$V(s, v, B) = \max_{D \in \{0,1\}} \left\{ (1-D)W(s, B) + D\left[W^d(s) - v\right] \right\}$$

where v is an *iid* utility shock.

Value of repayment:

$$W(s, B) = \max_{B'} \left\{ u \left(c(s, B, B') \right) - v \left(n(s, B, B') \right) + \beta_g \mathbb{E} \left[V \left(s', v', B' \right) \right] \right\}$$

s.t. the private equilibrium and the bond price schedule

Recursive Problem

• Let $s = \{z, r^*\}$. The value with the option to default is:

$$V(s, v, B) = \max_{D \in \{0,1\}} \left\{ (1-D)W(s, B) + D\left[W^d(s) - v\right] \right\}$$

where v is an *iid* utility shock.

Value of repayment:

$$W(s,B) = \max_{B'} \left\{ u \left(c(s,B,B') \right) - v \left(n(s,B,B') \right) + \beta_g \mathbb{E} \left[V \left(s',v',B' \right) \right] \right\}$$

s.t. the private equilibrium and the bond price schedule

Value of default:

$$W^{d}(s) = u(c(s, 0, 0)) - v(n(s, 0, 0)) + \beta_{g} \mathbb{E} \left[\iota V(s', v', 0) + (1 - \iota) W^{d}(s') \right]$$

s.t. the private equilibrium with B = 0, B' = 0 and $z = \tilde{z} - \max\{0, \lambda_0 \tilde{z} + \lambda_1 \tilde{z}^2\} < \tilde{z}$.

Recursive Equilibrium

Definition 2

Given the aggregate state $\{s, v, B\}$, a *recursive equilibrium* consists of government policies for default $\mathcal{D}(s, v, B)$ and borrowing $\mathcal{B}(s, B)$, and government value functions $\{V(s, v, B), W(s, B), W^d(s)\}$ such that:

- 1. Taking as given future policy and value functions $\mathcal{D}'(s', v', B'), \mathcal{B}'(s', B'), V(s', v', B'), W(s', B'), W(s', B'), government policies and value functions solve its optimization problem$
- 2. Government policies and values are consistent with future values and policies

Default Amplification

- ▶ Higher probability of default next period implies a future productivity loss z(D = 1) < z(D = 0)
- Two equations that link current allocations to expected future allocations:

Euler equation:
$$u_{c_t^D} = \beta i_t \mathbb{E}_t \left[\frac{u_{c_{t+1}^D}}{\pi_{t+1}} \right]$$

Phillips curve: $\varphi(\pi_t - \bar{\pi})\pi_t = (\epsilon - 1) \left(\frac{w_t}{z_t} - 1 \right) + \beta \varphi \mathbb{E}_t \left[\frac{u_{c_{t+1}^D} Y_{t+1}}{u_{c_t^D} Y_t} (\pi_{t+1} - \bar{\pi}) \pi_{t+1} \right]$

- Productivity loss in the future means:
 - Lower output next period \Rightarrow lower expected consumption \Rightarrow lower consumption today
 - Higher marginal costs next period \Rightarrow higher expected inflation \Rightarrow higher inflation today

Results

Model Fit

Moment	Data	Model
Means		
CPI inflation	4.11	4.17
Nominal interest rate	5.90	5.89
Spread	2.20	2.25
Consto-output ratio	66	63
Standard Deviations		
CPI inflation	1.00	0.81
Nominal interest rate	1.94	1.92
Output	1.68	2.47
Consumption	1.85	1.28
Spread	0.71	0.81
Correlations		
Output, spread	-0.39	-0.37
Inflation, spread	0.23	0.28

- I calibrate the model using SMM for Mexico using data for 2001Q1-2019Q4
- Model matches closely targeted means
- Model delivers similar volatilities of the CPI inflation, spreads and nominal int. rate
- It overestimates output volatility and underestimates cons. volatility
- Model replicates countercyclicality of spreads, and positive corr. of inflation and spreads.

World Interest Rate and Default Risk

Probability of Default

No effect on the probability of default when the economy has low debt

World Interest Rate and Default Risk

Probability of Default

- No effect on the probability of default when the economy has low debt
- Modest increase in default risk when the economy has very high debt.

World Interest Rate and Default Risk

Probability of Default

- No effect on the probability of default when the economy has low debt
- Modest increase in default risk when the economy has very high debt.
- Large increase in the region in-between
 - \Rightarrow State-contingent sensitivity to U.S. monetary tightenings

Policy Functions with No Default Risk

- Higher cost of borrowing reduces debt and leads to a depreciation
- Increase in export demand raises output, and firms increase prices
 - Central Bank increases nom. rate
 - \Rightarrow Comovement between U.S. and domestic interest rates
 - \Rightarrow Expansionary depreciation

Policy Functions with Default Risk

- Higher default risk lowers consumption and output
 Default amplification
- Inflation falls due to fall in domestic demand
- Central Bank reduces nom. rate
 - \Rightarrow Neg. comovement between U.S. and domestic int. rates

 \Rightarrow Contractionary depreciation

Simulations

- Feed into the model the observed Federal funds effective rate for the period 2022Q2-2023Q3
- Simulate the model forward under constant productivity, starting from two different initial levels of debt: "low" and "high".
- I assume U.S. monetary tightening continues at a slower pace for the remaining periods in the simulation

U.S. Monetary Tightening with Low Initial Debt

Simulation rationalizes monetary policy synchronization

Expenditure-switching dominates effect of exchange rate on output

U.S. Monetary Tightening with High Initial Debt

- Default amplification breaks the monetary policy synchronization between U.S. and EMEs (in line with De Leo, Gopinath and Kalemli-Ozkan (2023))
- The model delivers an expansionary appreciation

Consumptio

Conclusion

- An increase in the world interest rate can increase the probability of default
- Default amplification is able to break monetary policy synchronization between U.S. and EMEs
- ▶ The model can generate a negative comovement between exchange rate and output

Back-Up Slides

Policy Functions with No Default Risk

2/6

Policy Functions with Default Risk

U.S. Monetary Tightening with Low Initial Debt

U.S. Monetary Tightening with High Initial Debt

Default Decision

▶ Let $v^{\star}(s, B)$ be a cutoff cost: the sovereign is indifferent between repaying and defaulting:

$$v^{\star}(s,B) = W^{d}(s) - W(s,B)$$

Then

$$D(s,B) = egin{cases} 1 & ext{if } v \leq v^{\star}(s,B) \ 0 & ext{otherwise} \end{cases}$$

• Let Φ be the cumulative distribution of v. We assume $v \sim \text{Logistic}(0, \rho_D)$:

$$\begin{split} \mathsf{Prob}(D = 1 | \mathbf{s}, B) &= \Phi(\mathbf{v}^{\star}(\mathbf{s}, B)) \\ &= \frac{\exp\left(\frac{W^{d}(\mathbf{s})}{\rho_{D}}\right)}{\exp\left(\frac{W^{d}(\mathbf{s})}{\rho_{D}}\right) + \exp\left(\frac{W(\mathbf{s}, B)}{\rho_{D}}\right)} \end{split}$$