Sovereign Debt, Currency Composition and Financial Repression

Teresa Balestrini Leonardo Barreto Carlos Bolivar

University of Minnesota

September 13th, 2024

- Debt markets are populated by domestic and foreign investors.
 - Bondholders' composition affects the risk of default.

- Debt markets are populated by domestic and foreign investors.
 - Bondholders' composition affects the risk of default.
- The composition between domestic and foreign investors is an equilibrium outcome.

- Debt markets are populated by domestic and foreign investors.
 - Bondholders' composition affects the risk of default.
- The composition between domestic and foreign investors is an equilibrium outcome.
- Governments choose the currency composition of debt
 - Face a trade-off between LC and FC

- Debt markets are populated by domestic and foreign investors.
 - Bondholders' composition affects the risk of default.
- The composition between domestic and foreign investors is an equilibrium outcome.
- Governments choose the currency composition of debt
 - Face a trade-off between LC and FC

This paper studies the relationship between the currency and bondholder composition of sovereign debt in a sovereign default model

- We present some empirical facts on currency and bondholder composition of sovereign debt
- Build a 2-period model of sovereign default with two types of investors and two types of bonds
- We establish that the government uses LC bonds as a tool to reduce foreign debt

Preview of Results

Empirical

- We document that in EM, governments issue mostly LC debt
- We find that LC debt is held mostly by Domestic Investors
- Marginal demand of Domestic debt in LC is larger than in FC

Model

- The share of LC in hands of domestics is higher than the share of FC
- Foreign debt is inefficiently high
- Government issues LC in equilibrium
- With no-cost Financial Repression, the government does not issue LC

	Domestic lenders	Foreign lenders
Local currency debt	62 %	12 %
Foreign currency debt	6 %	20 %

	Domestic lenders	Foreign lenders
Local currency debt	62 %	12 %
Foreign currency debt	6 %	20 %

	Domestic lenders	Foreign lenders
Local currency debt	62 %	12 %
Foreign currency debt	6 %	20 %

	Domestic lenders	Foreign lenders
Local currency debt	62 %	12 %
Foreign currency debt	6 %	20 %

	Domestic lenders	Foreign lenders
Local currency debt	62 %	12 %
Foreign currency debt	6 %	20 %

Following Broner et al. (2022)

$$\triangle B_{it}^{D} = \gamma_{1} + \gamma_{2} \triangle B_{it} + \gamma_{3} X_{it-1}^{D} + \gamma_{4} X_{it-1}^{D} \triangle B_{t} + \nu_{t} \qquad \forall i \in LC, FC$$

- $\triangle B_{it}^D = B_{it}^D B_{it-1}^D$ denotes the change in domestic debt in LC or FC
- $\triangle B_{it} = B_{it} B_{it-1}$ denotes the change in total debt in LC or FC
- $X_{it-1}^D = B_{it-1}^D / B_{it-1}$ denotes the average domestic share of LC or FC

Following Broner et al. (2022)

$$\triangle B_{it}^{D} = \gamma_{1} + \gamma_{2} \triangle B_{it} + \gamma_{3} X_{it-1}^{D} + \gamma_{4} X_{it-1}^{D} \triangle B_{t} + \nu_{t} \qquad \forall i \in LC, FC$$

- $\triangle B_{it}^D = B_{it}^D B_{it-1}^D$ denotes the change in domestic debt in LC or FC
- $\triangle B_{it} = B_{it} B_{it-1}$ denotes the change in total debt in LC or FC
- $X_{it-1}^D = B_{it-1}^D / B_{it-1}$ denotes the average domestic share of LC or FC

Marginal Effect_i =
$$\gamma_2 + \gamma_4 X_{it-1}^D$$

	riangle Domestic LC	riangle Domestic FC
$ riangle$ Total debt $_{it}$	0.599***	0.753***
	(0.053)	(0.146)
$Share_{it-1}^{D}$	-0.007	-0.097
	(0.090)	(0.064)
riangle Total debt _{it} *Share ^D _{it-1}	0.403***	-7.406***
	(0.055)	(1.415)
Time dummies	Yes	Yes
Country fixed effects	Yes	Yes
Observations	705	619

Notes: Domestic Debt in LC (FC) and Total Debt in LC (FC) are measured in real terms with fixed exchange rate in percent of GDP. Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

• Domestic marginal demand in LC is higher than in FC

Domestic Debt

Notes: Arslanalp and Tsuda (2014), updated on April 30th 2024.

Two Period Model: Environment

• Domestic Investors

- * Time-separable preferences over tradable consumption and leisure
- * Pay distortionary taxes τ_t on labor income
- * Save using only government bonds

Two Period Model: Environment

• Domestic Investors

- * Time-separable preferences over tradable consumption and leisure
- * Pay distortionary taxes τ_t on labor income
- * Save using only government bonds

• Government

- * Issues one-period debt in a market populated by domestic and foreign investors
- \ast Chooses the amount of debt denominated in LC and FC
- * If defaults, it incurs a stochastic utility cost ϕ

Two Period Model: Environment

• Domestic Investors

- * Time-separable preferences over tradable consumption and leisure
- * Pay distortionary taxes τ_t on labor income
- * Save using only government bonds

• Government

- * Issues one-period debt in a market populated by domestic and foreign investors
- \ast Chooses the amount of debt denominated in LC and FC
- * If defaults, it incurs a stochastic utility cost ϕ

• Exogenous processes

* Nominal exchange rate and default cost ($s = \{e_1, \phi\}$)

- Cost of default $\phi \in [\underline{\phi}, \overline{\phi}]$ has a p.d.f f_{ϕ} independent of debt
- Nominal exchange rate:
 - * In first period $e_0^{-1} = 1$
 - * In second period e_1^{-1} is stochastic and $\mathbb{E}\left[e_1^{-1}
 ight]=1$
- The shocks are not correlated: $cov(e_1^{-1}, \phi) = 0$

Domestic Investors

$$U = u(c_0 + v(1 - n_0)) + \beta \mathbb{E}[u(c_1(s) + v(1 - n_1(s))) - d(s)\phi]$$

Domestic Investors

$$U = u(c_0 + v(1 - n_0)) + \beta \mathbb{E}[u(c_1(s) + v(1 - n_1(s))) - d(s)\phi]$$

The budget constraint in the period t = 0 is:

Domestic Investors

$$U = u(c_0 + v(1 - n_0)) + \beta \mathbb{E}[u(c_1(s) + v(1 - n_1(s))) - d(s)\phi]$$

The budget constraint in the period t = 0 is:

In t = 1 at state *s*, the budget constraint of domestic investors becomes:

$$c_1(s) = (1 - au_1(s))n_1(s) + (1 - d(s))igg(rac{b_D}{e_1} + b_D^{\star}igg) \quad orall s$$

Where $d \in \{0,1\}$ takes the value of 1 if the government defaults or zero otherwise

Continuum of identical risk-neutral lenders with initial wealth $\ensuremath{\mathcal{W}}$

$$\pi = \max_{\left\{b_F, b_F^\star
ight\}} \quad \mathbb{E}igg[(1-d(s))igg(rac{b_F}{e_1}+b_F^\starigg)igg]+(W-qb_F-q^\star b_F^\star)R$$

Continuum of identical risk-neutral lenders with initial wealth ${\it W}$

$$\pi = \max_{\left\{b_F, b_F^*\right\}} \quad \mathbb{E}\bigg[(1-d(s))\bigg(\frac{b_F}{e_1} + b_F^*\bigg)\bigg] + (W - qb_F - q^*b_F^*)R$$

Given q, q^* their demand for government bonds is:

$$b_{F}^{\star} = \begin{cases} 0 & \text{if } q^{\star} > \mathbb{E} \begin{bmatrix} \underline{(1-d(s))}{R} \\ \\ 0, W \end{bmatrix}, & \text{if } q^{\star} = \mathbb{E} \begin{bmatrix} \underline{(1-d(s))}{R} \\ \\ \underline{(1-d(s))}{R} \end{bmatrix}, & b_{F} = \begin{cases} 0 & \text{if } q > \mathbb{E} \begin{bmatrix} \underline{(1-d(s))}{R} \\ \\ 0, W \end{bmatrix}, \\ [0, W] & \text{if } q = \mathbb{E} \begin{bmatrix} \underline{(1-d(s))}{R} \\ \\ \underline{(1-d(s))}{R} \\ \\ 1 \end{bmatrix}, \end{cases}$$

Government

The fiscal budget for t = 0 is:

$$ar{B_0} = au_0 n_0 + q B_1 + q^{\star} B_1^{\star}$$

In t = 1, the fiscal budget becomes:

$$(1-d(s))\left(rac{B_1}{e_1}+B_1^{\star}
ight)= au_1(s)n_1(s) \quad \forall s$$

► CE

Bond Market Equilibrium

Let $B \equiv (B_1^*, B_1, B_F^*, B_F)$. Define the SDF of the domestic investors as:

$$\Lambda(\boldsymbol{B}, e_1) = \frac{\beta(u'(c_1(s) + v(1 - n_1(s))))}{u'(c_0 + v(1 - n_0))}$$

Price schedules are given by:

$$Q^{\star}(\boldsymbol{B}) = \begin{cases} \mathbb{E} \begin{bmatrix} \frac{(1-d(s))}{R} \end{bmatrix} & \text{if } B_{F}^{\star} > 0, \\ \mathbb{E} \begin{bmatrix} (1-d(s)) \wedge (\boldsymbol{B}, e_{1}) \end{bmatrix} & \text{if } B_{F}^{\star} = 0 \end{cases}$$
$$Q(\boldsymbol{B}) = \begin{cases} \mathbb{E} \begin{bmatrix} \frac{(1-d(s))}{R} \frac{1}{e_{1}} \end{bmatrix} & \text{if } B_{F} > 0, \\ \mathbb{E} \begin{bmatrix} (1-d(s)) \frac{1}{e_{1}} \wedge (\boldsymbol{B}, e_{1}) \end{bmatrix} & \text{if } B_{F} = 0 \end{cases}$$

$$V_1({m{B}},s) = \max_{d \in \{0,1\}} (1-d) V^R({m{B}},e_1) + d(V^D-\phi)$$

$$V_1({m B},s) = \max_{d \in \{0,1\}} (1-d) V^R({m B},e_1) + d(V^D-\phi)$$

Where the value of repayments is:

$$V^{R}(\boldsymbol{B}, e_{1}) = u\left(N^{R}(B_{1}^{\star}, B_{1}, e_{1}) - \frac{B_{F}}{e_{1}} - B_{F}^{\star} + v\left(1 - N^{R}(B_{1}^{\star}, B_{1}, e_{1})\right)\right)$$

$$V_1({m{B}},s) = \max_{d \in \{0,1\}} (1-d) V^R({m{B}},e_1) + d(V^D-\phi)$$

Where the value of repayments is:

$$V^{R}(\boldsymbol{B}, e_{1}) = u\left(N^{R}(B_{1}^{\star}, B_{1}, e_{1}) - \frac{B_{F}}{e_{1}} - B_{F}^{\star} + v\left(1 - N^{R}(B_{1}^{\star}, B_{1}, e_{1})\right)\right)$$

The value of default is:

$$V^D = u(N^D + v(1 - N^D))$$

We characterized the default decision by defining the following threshold:

$$\hat{V_1}(oldsymbol{B},e_1) = V^D - V^R(oldsymbol{B},e_1)$$

The government's default decision is the following:

$$D(m{B},e_1) = egin{cases} 1 & ext{if} & \hat{V_1}(m{B},e_1) > \phi_1 \ 0 & ext{otherwise}. \end{cases}$$

At each e_1 the probability of default is:

$$F(\hat{V}_1(\boldsymbol{B}, \boldsymbol{e_1})) = \int_{\underline{\phi}}^{\hat{V}_1(\boldsymbol{B}, \boldsymbol{e_1})} f(\phi) d\phi$$

Price Functions

The price function becomes:

$$Q^{\star}(\boldsymbol{B}) = \left\{ egin{array}{ll} \mathbb{E}_e iggl[rac{(1-F_{\phi}(\hat{V}(\boldsymbol{B}, \mathbf{e_1}))}{R} iggr] & ext{if } B_F^{\star} > 0, \ \mathbb{E}_e iggl[(1-F_{\phi}(\hat{V}(\boldsymbol{B}, \mathbf{e_1})) \Lambda(\boldsymbol{B}, \mathbf{e_1}) iggr] & ext{if } B_F^{\star} = 0. \end{array}
ight.$$

$$Q(\boldsymbol{B}) = \begin{cases} \mathbb{E}_e \begin{bmatrix} \frac{(1-F_{\phi}(\hat{V}(\boldsymbol{B},e_1))}{R} \frac{1}{e_1} \end{bmatrix} & \text{if } B_F > 0, \\ \mathbb{E}_e \begin{bmatrix} (1-F_{\phi}(\hat{V}(\boldsymbol{B},e_1)) \frac{1}{e_1} \Lambda(\boldsymbol{B},e_1) \end{bmatrix} & \text{if } B_F = 0 \end{cases}$$

Government's Problem in t = 0

$$V_0 = \max_{B_1, B_1^\star} u(c_0 + v(1 - N_0(\boldsymbol{B}))) + eta \mathbb{E}[V_1(\boldsymbol{B}, s)]$$

subject to

$$egin{aligned} c_0 + ar{B_0} = & N_0(m{B}) + Q(m{B})B_F + Q^{\star}(m{B})B_F^{\star} \ & Q^{\star}(m{B}), \quad Q(m{B}) \ & B_F = & \mathcal{B}_F^{\star}(B_1, B_1^{\star}), \quad B_F^{\star} = & \mathcal{B}_F(B_1, B_1^{\star}) \end{aligned}$$

Domestic Demand for Government Bonds

Proposition 1

Assume $Cov(e_1^{-1}, \phi) = 0$. Also, let $B_1^* > 0$, $B_1 \ge 0$. Then $B_D^* > 0$ if and only if $B_D = B_1$.

Domestic Demand for Government Bonds

Proposition 1

Assume $\text{Cov}(e_1^{-1}, \phi) = 0$. Also, let $B_1^* > 0$, $B_1 \ge 0$. Then $B_D^* > 0$ if and only if $B_D = B_1$.

Two key ingredients

• Domestic investors' budget constraint in t = 1:

$$c_1(s) = (1- au_1(s))n_1(s) + (1-d(s))igg(rac{b_D}{e_1}+b_D^{\star}igg) \quad orall s$$

• Government's fiscal budget in t = 1:

$$(1-d(s))\left(\frac{B_1}{e_1}+B_1^*\right)=\tau_1(s)n_1(s) \quad \forall s$$

Model Results

Model Results

Model Results

Domestic debt to total debt ratio

Foreign Debt is Inefficiently High

Lemma 1

Let $B_1^{\star} > 0$. Then foreign demand for government bonds is inefficiently high

Foreign Debt is Inefficiently High

Lemma 1

Let $B_1^{\star} > 0$. Then foreign demand for government bonds is inefficiently high

Key drivers

1.
$$B_F^{\star} = B_1^{\star} - B_D^{\star}$$

2. $V^R(\boldsymbol{B}, e_1) = u \left(N^R(B_1^{\star}, B_1, e_1) - \frac{B_F}{e_1} - B_F^{\star} + v \left(1 - N^R(B_1^{\star}, B_1, e_1) \right) \right)$
3. $D(\boldsymbol{B}, e_1)$

4. $Q^{*}(B)$

Proposition 2

Let $Cov(e_1^{-1}, \phi) = 0$ and $B_1^* > 0$. Then, $B_1 = 0$ cannot be part of the Markov Equilibrium.

Proposition 2

Let $Cov(e_1^{-1}, \phi) = 0$ and $B_1^* > 0$. Then, $B_1 = 0$ cannot be part of the Markov Equilibrium.

Two conditions:

- 1. Domestic investors demand all LC debt (*Proposition 1*)
- 2. Foreign Debt is Inefficiently High (Lemma 1)

Government can impose a minimum requirement on b_D^* by using Financial Repression (Chari et al. (2020)) without any cost

 $b_D^\star \geq \Theta B_1^\star$

Government can impose a minimum requirement on b_D^* by using Financial Repression (Chari et al. (2020)) without any cost

 $b_D^\star \geq \Theta B_1^\star$

Proposition 3

Assume $Cov(e_1^{-1}, \phi) = 0$. Let $B_1^* > 0$. Then, $B_1 = 0$ is part of the Markov Equilibrium in a regulated economy.

- In EM, governments issue mostly LC debt
- LC debt is held mostly by Domestic Investors
- Government uses LC debt to reduce foreign debt
- If government can choose the domestic demand in FC at no-cost, then issues only FC debt

EM issue mostly in LC

Share of Total Public Debt in Local Currency

Notes: Arslanalp and Tsuda (2014), updated on April 30th 2024.

Literature Review

• Sovereign default models

Eaton and Gersovitz (1981), Aguiar and Gopinath (2006), Arellano (2008)

- Currency composition and the hedging benefits of LC debt Eichengreen and Hausmann (1999), Ottonello and Perez (2019), Du et al. (2020), Lee (2021)
- Bondholder composition and domestic default Bolivar (2023), D Erasmo and Mendoza (2021), Sunder-Plassmann (2020)
- Financial repression as a tool to change the composition of bondholders Chari et al. (2020), Mallucci (2022)
- Empirical work on currency and bondholder composition of sovereign debt Hausmann and Panizza (2003), Arslanalp and Tsuda (2014)

	riangle Domestic LC	riangle Domestic FC
$ riangle$ Total debt $_{it}$	0.599***	0.753***
	(0.053)	(0.146)
$Share_{it-1}^{D}$	-0.007	-0.097
	(0.090)	(0.064)
$ riangle$ Total debt $_{it}*Share^D_{it-1}$	0.403***	-7.406***
	(0.055)	(1.415)
Time dummies	Yes	Yes
Country fixed effects	Yes	Yes
Observations	705	619

Notes: Domestic Debt in LC (FC) and Total Debt in LC (FC) are measured in real terms with fixed exchange rate in percent of GDP.

Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Competitive Equilibrium

Definition 1

Given an initial debt B_0 and government policies $\{B_1, B_1^*, \tau_1, \{\tau_2(s), d(s)\}_s\}$, an equilibrium consists of a sequence of prices $\{q, q^*\}$, and domestic investor's allocations $\{c_0, n_0, \{c_1(s), n_1(s)\}_s, b_D, b_D^*\}$ such that

- Given prices and government policies, {c₀, n₀, {c₁(s), n₁(s)}_s, b_D, b^{*}_D} maximizes domestic investors' problem
- Given government policies, foreign demand for government bonds solve the foreign lenders' problem
- Given prices and domestic investor's allocations, $\{B_1, B_1^*, \tau_0, \{\tau_1(s), d(s)\}_s\}$, is consistent with government budget constraints
- Markets clear: $B_F = B_1 B_D$, $B_F^{\star} = B_1^{\star} B_D^{\star}$, $B_D = b_D$ and $B_D^{\star} = b_D^{\star}$

▶ Back

Let $v(1 - n_t) = \psi \log(1 - n_t)$. Combining optimality conditions of the domestic investors and government:

$$\psi = (1 - n_0) \left[1 - \frac{B_0 - qB_1 - q^*B_1^*}{n_0} \right]$$

$$\psi = (1 - n_1(s)) \left[1 - rac{(1 - d(s)) \left(rac{B_1}{e_1} + B_1^\star
ight)}{n_1(s)}
ight] \quad orall s$$

Given debt policy B_1^*, B_1 , the portfolio B_D^*, B_D solve the problem of the domestic investors if and only if:

$$\begin{split} 0 &= \eta_1 \Big(\mathcal{Q}(\boldsymbol{B}) - \mathbb{E}_e \left[(1 - F_{\phi}(\hat{\phi}(\boldsymbol{B}, \mathbf{e}_1)) \frac{\Lambda(\boldsymbol{B}, \mathbf{e}_1)}{\mathbf{e}_1} \right] \Big) \\ 0 &= \eta_2 \Big(\mathcal{Q}^{\star}(\boldsymbol{B}) - \mathbb{E}_e[(1 - F_{\phi}(\hat{\phi}(\boldsymbol{B}, \mathbf{e}_1)) \Lambda(\boldsymbol{B}, \mathbf{e}_1)] \Big) \\ \mathcal{B}_D^{\star} &= 0 \quad if \quad \eta_1 > 0. \\ \mathcal{B}_D &= 0 \quad if \quad \eta_2 > 0. \end{split}$$

Let $\mathcal{B}_{F}^{*}(B_{1}, B_{1}^{*}), \mathcal{B}_{F}(B_{1}, B_{1}^{*})$ be the policy functions consistent with the optimality conditions given government policy

Definition 2

Given initial debt B_0 , a Markov equilibrium is a set of value functions $V_0, V_1(\boldsymbol{B}, s)$, price functions $Q(\boldsymbol{B}), Q^*(\boldsymbol{B})$, and policy functions $\mathcal{B}_F^*(B_1, B_1^*), \mathcal{B}_F(B_1, B_1^*), \mathcal{B}, \mathcal{B}^*$ such that:

- given the price, $\{\mathcal{B}_F^*(B_1, B_1^*), \mathcal{B}_F(B_1, B_1^*)\}$ solves the domestic investor's problem at every state;
- Price functions Q(B), $Q^*(B)$ are consistent with the demand function of foreign investors and the Euler equations of the domestic investors;
- $\mathcal{D}, \mathcal{B}, \mathcal{B}^{\star}$ solves the government problem at every state, and V_0, V_1 attains the maximum

Regulated Competitive Equilibrium

Definition 1

Given an initial debt level B_0 and government policies $\{B_1, B_1^\star, \tau_1, \{\tau_2(s), d(s)\}_s, \Theta\}$, an equilibrium consists of a sequence of prices $\{q, q^\star\}$, and domestic investors' allocations $\{c_0, n_0\{c_1(s), n_1(s)\}_s, b_D, b_D^\star\}$ such that

- Given prices and government policies, {c₀, n₀{c₁(s), n₁(s)}_s, b_D, b^{*}_D} maximizes domestic investors' problem;
- Given government policies, foreign demand for government bonds solve the foreign lenders' problem;
- Given prices and domestic investors' allocations, {B₁, B₁^{*}, τ₁, {τ₂(s), d(s)}_s}, is consistent with government budget constraints;
- Markets clear: $B_F = B_1 B_D$, $B_F^\star = B_1^\star B_D^\star$, $B_D = b_D$ and $B_D^\star = b_D^\star$.

▶ Back

The problem of the government in a regulated economy becomes:

$$V_0^R = \max_{B_{f 1},B_{f 1}^\star,B_F^\star} u(c_0+v(1-N_0(m{B})))+eta\mathbb{E}[V_1(m{B},s)]$$

subject to

$$egin{aligned} c_0 + B_0 &= N_0({m{B}}) + Q({m{B}})B_F + Q^{\star}({m{B}})B_F^{\star} \ Q^{\star}({m{B}}), & Q({m{B}}) \ B_F^R(B_1, B_1^{\star}) \end{aligned}$$

Definition 2

Given initial debt B_0 , a Markov equilibrium is a set of value functions V_0^R , $V_1(\boldsymbol{B}, s)$, price functions $Q(\boldsymbol{B})$, $Q^*(\boldsymbol{B})$, and policy functions $\mathcal{B}_F^R(B_1, B_1^*)$, \mathcal{B}_F^* , \mathcal{B} , \mathcal{B}^* such that:

- given the price, $\{\mathcal{B}_F^R(B_1, B_1^*)\}$ solves the domestic investor's problem at every state;
- Price functions $Q(B), Q^*(B)$ are consistent with the demand function of foreign investors and the Euler equations of the domestic investors;
- $\mathcal{B}_{F}^{\star}, \mathcal{B}, \mathcal{B}^{\star}$ solves the government problem at every state, and V_{0}, V_{1} attains the maximum

Foreign Debt is Inefficiently High

From the government FOC

 $Q^{\star}(B) = \mathbb{E}_{e}[(1 - F_{\phi}(\hat{V}(B, e_{1})) \wedge (B, e_{1})] + \underbrace{\left(\frac{\partial Q}{\partial B^{\star}} - \frac{\partial Q^{\star}}{\partial B^{\star}_{F}}\right) \mathcal{B}_{F}^{\star}(B_{1}, B_{1}^{\star}) + \left(\frac{\partial Q}{\partial B^{\star}} - \frac{\partial Q}{\partial B^{\star}_{F}}\right) \mathcal{B}_{F}(B_{1}, B_{1}^{\star})}_{\text{ext}_{1}}$

$$+\underbrace{\frac{\partial n_{0}}{\partial B^{\star}}\left[1-v'(1-n_{0})\right]-\mathbb{E}\left[\left(1-F_{\phi}(\hat{V}(\boldsymbol{B},e_{1}))\Lambda(\boldsymbol{B},e_{1})\frac{\partial n_{1}^{\wedge}}{\partial B^{\star}}\left[1-v'(1-n_{1})\right]\right]}_{\text{ext}_{2}}$$

-

▶ Back

Definition 5

An allocation in the bond market \hat{B} is constrained efficiency in this environment if it is part of Markov equilibrium and there no exist another allocation \overline{B} such that:

•
$$u(c_0 + v(1 - N_0(\overline{B}))) + \beta \mathbb{E}[V_1(\overline{B}, s)] > u(c_0 + v(1 - N_0(\hat{B}))) + \beta \mathbb{E}[V_1(\hat{B}, s)];$$

•
$$c_0^T + B_0 \leq N_0(\overline{B}) + Q(\overline{B})B_F + Q^*(\overline{B})B_F^*$$

Proposition 4

Assume $Cov(e_1^{-1}, \phi) = 0$. Let \mathbf{B}^{NR} and \mathbf{B}^R be the optimal allocation in an unregulated and regulated economy, respectively. Then, \mathbf{B}^{NR} is not constrained efficient while \mathbf{B}^R is constrained efficient.